Explicit Block-structures for Block-symmetric Fiedler-like Pencils∗
نویسندگان
چکیده
In the last decade, there has been a continued effort to produce families of strong linearizations of a matrix polynomial P (λ), regular and singular, with good properties, such as, being companion forms, allowing the recovery of eigenvectors of a regular P (λ) in an easy way, allowing the computation of the minimal indices of a singular P (λ) in an easy way, etc. As a consequence of this research, families such as the family of Fiedler pencils, the family of generalized Fiedler pencils (GFP), the family of Fiedler pencils with repetition, and the family of generalized Fiedler pencils with repetition (GFPR) were constructed. In particular, one of the goals was to find in these families structured linearizations of structured matrix polynomials. For example, if a matrix polynomial P (λ) is symmetric (Hermitian), it is convenient to use linearizations of P (λ) that are also symmetric (Hermitian). Both the family of GFP and the family of GFPR contain block-symmetric linearizations of P (λ), which are symmetric (Hermitian) when P (λ) is. Now the objective is to determine which of those structured linearizations have the best numerical properties. The main obstacle for this study is the fact that these pencils are defined implicitly as products of so-called elementary matrices. Recent papers in the literature had as a goal to provide an explicit block-structure for the pencils belonging to the family of Fiedler pencils and any of its further generalizations to solve this problem. In particular, it was shown that all GFP and GFPR, after permuting some block-rows and block-columns, belong to the family of extended block Kronecker pencils, which are defined explicitly in terms of their block-structure. Unfortunately, those permutations that transform a GFP or a GFPR into an extended block Kronecker pencil do not preserve the block-symmetric structure. Thus, in this paper we consider the family of block-minimal bases pencils, which is closely related to the family of extended block Kronecker pencils, and whose pencils are also defined in terms of their block-structure, as a source of canonical forms for block-symmetric pencils. More precisely, we present four families of block-symmetric pencils which, under some generic nonsingularity conditions are block minimal bases pencils and strong linearizations of a matrix polynomial. We show that the block-symmetric GFP and GFPR, after some row and column permutations, belong to the union of these four families. Furthermore, we show that, when P (λ) is a complex matrix polynomial, any block-symmetric GFP and GFPR is permutationally congruent to a pencil in some of these four families. Hence, these four families of pencils provide an alternative but explicit approach to the block-symmetric Fiedler-like pencils existing in the literature.
منابع مشابه
Large Vector Spaces of Block-symmetric Strong Linearizations of Matrix Polynomials
M. I. BUENO∗, F. M. DOPICO †, S. FURTADO ‡, AND M. RYCHNOVSKY § Abstract. Given a matrix polynomial P (λ) = Pk i=0 λ Ai of degree k, where Ai are n × n matrices with entries in a field F, the development of linearizations of P (λ) that preserve whatever structure P (λ) might posses has been a very active area of research in the last decade. Most of the structure-preserving linearizations of P (...
متن کاملA Unified Approach to Fiedler-like Pencils via Strong Block Minimal Bases Pencils
The standard way of solving the polynomial eigenvalue problem associated with a matrix polynomial is to embed the matrix polynomial into a matrix pencil, transforming the problem into an equivalent generalized eigenvalue problem. Such pencils are known as linearizations. Many of the families of linearizations for matrix polynomials available in the literature are extensions of the so-called fam...
متن کاملCounting Fiedler pencils with repetitions
We introduce a new notation based on diagrams to deal with Fiedler pencils with repetitions (FPR), and use it to solve several counting problems. In particular, we give explicit recurrences to count the number of FPRs of a given degree d, the number of symmetric, palindromic and antipalindromic ones (where the latter two structures are intended in the sense of [5]). We relate these structures t...
متن کاملStructured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملConditioning and Backward Error of Block-symmetric Block-tridiagonal Linearizations of Matrix Polynomials
For each square matrix polynomial P (λ) of odd degree, a block-symmetric block-tridiagonal pencil TP (λ), in the family of generalized Fiedler pencils, was introduced by Antoniou and Vologiannidis in 2004, and a variation RP (λ) of this pencil was introduced by Mackey et al. in 2010. These two pencils have several appealing properties, namely they are always strong linearizations of P (λ), they...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017